Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{VO}\left(\mathrm{HPO}_{4}\right)_{5} \mathrm{~B}_{2} \mathrm{O}\right] \cdot \mathrm{H}_{2} \mathrm{O} \cdot-$ $\mathrm{H}_{3} \mathrm{PO}_{4}$, a novel borophosphate cluster containing a single vanadium centre and linked by hydrogen bonds into a three-dimensional framework

Emma Wikstad and Mikael Kritikos*

Structural Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
Correspondence e-mail: mkr@struc.su.se

Received 17 January 2003
Accepted 31 January 2003
Online 28 February 2003

The title novel vanadium borophosphate compound, bis(1,4diazonia[2.2.2]octane) μ_{3}-oxo-oxopenta- μ-phosphato-diboronvanadium monohydrate phosphoric acid solvate, containing the cluster anion $\left[\mathrm{VO}\left(\mathrm{PO}_{3} \mathrm{OH}\right)_{5} \mathrm{~B}_{2} \mathrm{O}\right]^{4-}$, has been synthesized under mild hydrothermal conditions. Extensive $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding is observed between the molecular units.

Comment

Borophosphates with anionic $\left[\mathrm{B}_{x} \mathrm{P}_{y} \mathrm{O}_{z}\right]^{p-}$ frameworks or isolated clusters represent a rather broad class of compounds that have received much attention recently (Kniep et al., 1999; Cheetham et al., 1999; Bontchev et al., 1999a). In particular, several cluster compounds containing V have been synthesized and structurally characterized (Bontchev et al., 1999b, $2000 a, b$). The clusters are mostly anionic species, built up of tetrahedral PO_{4} units in combination with triangular BO_{3} or tetrahedral BO_{4} units. Most of these vanadium borophosphate clusters contain several V atoms in each cluster unit. Our work has focused on the synthesis of metal borophosphates that

(1)
exhibit structure-dependent magnetic properties (Kritikos et al., 2001). The title borophosphate, $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{VO}\left(\mathrm{PO}_{3^{-}}\right.\right.$ $\left.\mathrm{OH})_{5} \mathrm{~B}_{2} \mathrm{O}\right] \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{H}_{3} \mathrm{PO}_{4}$, (I), containing one VO^{2+} unit, is one of the few borophosphate compounds containing a single
VO^{2+} centre within the borophosphate anion. In fact, to the best of our knowledge, the only previously described example of a borophosphate cluster containing a single V atom is the anion $\left[\mathrm{VO}\left(\mathrm{PO}_{3} \mathrm{OH}\right)_{4}\left(\mathrm{~B}_{3} \mathrm{O}_{3} \mathrm{OH}\right)\right]^{4-}$, which is present in $\left(\mathrm{N}_{2} \mathrm{C}_{6} \mathrm{H}_{14}\right)_{2}\left[\mathrm{VO}\left(\mathrm{PO}_{3} \mathrm{OH}\right)_{4}\left(\mathrm{~B}_{3} \mathrm{O}_{3} \mathrm{OH}\right)\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Bontchev et al., 1999b). Although the two cluster anions have the same charge, they exhibit different P:B ratios; viz. 5:3 for (I) and 4:3 for the Bontchev cluster.

The geometry of the molecular anionic unit $\left[\mathrm{VO}\left(\mathrm{PO}_{3} \mathrm{OH}\right)_{5^{-}}\right.$ $\left.\mathrm{B}_{2} \mathrm{O}\right]^{4-}$ in (I) (Fig. 1) is, however, rather similar to the Bontchev anionic cluster. The V atom is hexacoordinated, with one short terminal $\mathrm{V}=\mathrm{O}$ bond, one elongated $\mathrm{V}-\mathrm{O}$ contact to an O atom that is only bonded to the B atoms, and four intermediate $\mathrm{V}-\mathrm{O}$ bonds where the O atoms belong to the cluster phosphate groups. All five P atoms in the borophosphate anion exhibit tetrahedral coordination. One of the two terminal $\mathrm{P}-\mathrm{O}$ bonds in each tetrahedron is significantly elongated due to protonation $[1.535$ (2)-1.572 (2) Å].

All H-atom positions were unequivocally revealed in difference maps and show that atoms O4, O8, O12, O16 and O20 in the phosphate groups are protonated. Bond-valence sum (BVS) calculations (Brown \& Altermatt, 1985; Brese \& O'Keeffe, 1991) were also made and are in accordance with the protonation pattern obtained from the difference maps.

The solid state structure of (I) is rather complex. The asymmetric unit consists of a borophosphate $\left[\mathrm{VO}\left(\mathrm{PO}_{3} \mathrm{OH}\right)_{5^{-}}\right.$ $\left.\mathrm{B}_{2} \mathrm{O}\right]^{4-}$ anion that is charge-balanced by two crystallographically independent $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)^{2+}$ cations, and two solvated molecules, viz. $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$. These molecular species are connected to each other through a network of homonuclear $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and heteronuclear $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. In particular, intermolecular pairwise interactions, of which some are charge assisted, exist between the following units [dabco is bis(1,4-diaza[2.2.2]octane) and VBPO is the vanadium borophosphate]: dabco-VBPO cluster, VBPO cluster-VBPO cluster, $\mathrm{H}_{3} \mathrm{PO}_{4}-\mathrm{VBPO}$ cluster, dabco$\mathrm{H}_{3} \mathrm{PO}_{4}$ and dabco- $\mathrm{H}_{2} \mathrm{O}$. Intramolecular $\mathrm{O} 12 \cdots \mathrm{O} 15$

Figure 1
A view of the $\left[\mathrm{VO}\left(\mathrm{PO}_{3} \mathrm{OH}\right)_{5} \mathrm{~B}_{2} \mathrm{O}\right]^{4-}$ anion in (I), shown with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Figure 2
A view showing some of the hydrogen bonds from the $\left[\mathrm{VO}\left(\mathrm{PO}_{3} \mathrm{OH}\right)_{5} \mathrm{~B}_{2} \mathrm{O}\right]^{4-}$ anion in (I). Displacement ellipsoids are drawn at the 30% probability level. Atoms marked with an asterisk $\left({ }^{*}\right)$, double asterisk $\left({ }^{(* *}\right)$ or hash (\#) are at the symmetry positions $(1-x, 1-y,-z),(2-x, 1-y,-z)$ and $(1+x$, $\frac{3}{2}-y, z-\frac{1}{2}$), respectively.
[2.623 (3) Å] and O20 …O6 [2.585 (3) Å] hydrogen bonds, classified as self (S) patterns, are present within the VBPO cluster (Fig. 2).

An examination of larger structural units reveals that several hydrogen-bond patterns can be distinguished. Some of the hydrogen bonds that propagate from the borophosphate anion in the asymmetric unit of (I) are shown in Fig. 2. A number of rings (R) or chains of rings, $(R)[C]$ (Bernstein et al., 1995), are present in the structure. In particular, several rings emanate from the $\mathrm{H}_{3} \mathrm{PO}_{4}$ molecule. Particularly noteworthy is the very short $\mathrm{O} 25 \cdots \mathrm{O} 18^{\mathrm{v}}$ distance [2.428 (4) \AA; symmetry code: (v) $1-x, 1-y, z$], indicating the presence of a very strong hydrogen bond between $\mathrm{H}_{3} \mathrm{PO}_{4}$ and VBPO units.

Experimental

$\mathrm{NH}_{4} \mathrm{VO}_{3}$ and dabco were purchased from ABCR and Aldrich, respectively, and used as received. All other chemicals used were from commercial sources and of reagent grade quality. In a typical experiment, a mixture of $\mathrm{NH}_{4} \mathrm{VO}_{3}(0.117 \mathrm{~g}, 1.00 \mathrm{mmol}), \mathrm{H}_{3} \mathrm{PO}_{4}$ $(0.40 \mathrm{ml}, 6.88 \mathrm{mmol}), \mathrm{ZnCl}_{2}(0.267 \mathrm{~g}, 1.96 \mathrm{mmol})$, dabco (0.120 g , $1.07 \mathrm{mmol}), \mathrm{H}_{3} \mathrm{BO}_{3}(0.130 \mathrm{~g}, 2.10 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(2.00 \mathrm{ml}$, 111 mmol) was added to a 5 ml Teflon-lined stainless steel autoclave and heated under autogenous pressure ($453 \mathrm{~K}, 3 \mathrm{~d}$). The initial pH of the solution was approximately 2.5 , and after completion of the reaction the pH had decreased to 2.0 . After temperature quenching, the reaction mixture was left to stand undisturbed at room temperature. During this period of crystallization, the viscosity of the liquid increased markedly. After 7-14 d, pale-blue block-shaped
crystals of (I) appeared. A scanning electron microscope (SEM, Jeol 820) equipped for energy-dispersive analysis of X-ray spectra (EDS, LINK AN 10000) was used for determining the elemental atomic ratios between the elements V and P in (I). The result was a $\mathrm{V}: \mathrm{P}$ ratio of 1:5.98. The analyses were performed on the same crystals that were used for single-crystal X-ray diffraction. It seems that the anionic borophosphate complex can only be formed under synthetic conditions where divalent metal ions such as Zn^{2+} and Mg^{2+} are present in the reaction mixture. However, none of these ions could be detected in the EDS analysis of (I). In the case of Co^{2+}, the EDS analysis showed a partial incorporation just above the detection limit. This indicates that a partial substitution of the VO^{2+} site for other divalent cations is possible.

Crystal data

$\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{VB}_{2} \mathrm{O}_{2}\left(\mathrm{HPO}_{4}\right)_{5}\right]--$
$\mathrm{H}_{2} \mathrm{O} \cdot \mathrm{H}_{3} \mathrm{PO}_{4}$
$M_{r}=928.84$
Monoclinic, $P 2_{1} / c$
$a=13.482(5) \AA$
$b=12.2569(13) \AA$
$c=19.6281(18) \AA$
$\beta=94.113(12)^{\circ} \AA$
$V=3236.6(6) \AA^{3}$
$Z=4$
$D_{x}=1.906 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5000 reflections
$\theta=2.3-28.0^{\circ}$
$\mu=0.71 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, pale blue
$0.19 \times 0.12 \times 0.10 \mathrm{~mm}$

Data collection

Stoe IPDS diffractometer	7428 independent reflections
φ oscillation scans	6006 reflections with $I>2 \sigma(I)$
Absorption correction: numerical	$R_{\text {int }}=0.039$
$(X-S H A P E$ and $X-R E D ;$ Stoe \&	$\theta_{\max }=27.9^{\circ}$
Cie, 1997)	$h=-17 \rightarrow 17$
$T_{\min }=0.879, T_{\max }=0.938$	$k=-16 \rightarrow 16$
30473 measured reflections	$l=-24 \rightarrow 23$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.113$
$S=1.10$
7428 reflections
483 parameters
H atoms: see below
Table 1
Selected bond lengths (\AA).

V1-O22	$1.6026(19)$	P4-O13	$1.516(2)$
V1-O11	$1.9944(17)$	P4-O14	$1.5570(19)$
V1-O13	$2.0043(18)$	P4-O16	$1.5612(18)$
V1-O19	$2.0079(18)$	P5-O19	$1.5077(19)$
V1-O7	$2.0159(17)$	P5-O18	$1.512(2)$
V1-O21	$2.3592(17)$	P5-O17	$1.547(2)$
P1-O1	$1.5107(18)$	P5-O20	$1.559(2)$
P1-O4	$1.5350(19)$	P6-O23	$1.5045(18)$
P1-O2	$1.5376(19)$	P6-O25	$1.509(2)$
P1-O3	$1.5454(18)$	P6-O26	$1.526(2)$
P2-O6	$1.5147(19)$	P6-O24	$1.540(2)$
P2-O7	$1.5149(18)$	O2-B1	$1.472(3)$
P2-O5	$1.5493(19)$	O3-B2	$1.474(3)$
P2-O8	$1.572(2)$	O5-B1	$1.482(3)$
P3-O11	$1.5164(18)$	O10-B1	$1.478(3)$
P3-O9	$1.5168(17)$	O14-B2	$1.468(3)$
P3-O10	$1.5546(18)$	O17-B2	$1.497(3)$
P3-O12	$1.5564(19)$	O21-B2	$1.444(3)$
P4-O15	$1.509(2)$	O21-B1	$1.465(3)$

All H atoms, except for $\mathrm{H} 27 A$ and $\mathrm{H} 27 B$ which were refined isotropically, were constrained to idealized geometries, with $\mathrm{C}-\mathrm{H}$ distances of $0.97 \AA, \mathrm{~N}-\mathrm{H}$ distances of $0.91 \AA$ and $\mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$. All H atoms were assigned isotropic displacement parameters of $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\mathrm{eq}}(\mathrm{O})$.

Data collection: IPDS (Stoe \& Cie, 1997); cell refinement: IPDS; data reduction: $I P D S$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON99 (Spek, 2003) and DIAMOND (Brandenburg, 2001).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1684). Services for accessing these data are described at the back of the journal.

Table 2
Short $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ contacts $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 9^{\text {i }}$	0.91	1.78	2.674 (3)	167
$\mathrm{N} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\text {ii }}$	0.91	1.83	2.728 (3)	167
N2-H2 . O 23	0.91	1.79	2.694 (3)	171
$\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{O} 27^{\mathrm{iii}}$	0.91	2.07	2.816 (4)	139
O16-H161 \cdots O23	0.82	1.75	2.563 (3)	170
$\mathrm{O} 24-\mathrm{H} 24 \cdots \mathrm{O} 9^{\text {iv }}$	0.82	1.75	2.558 (3)	169
$\mathrm{O} 25-\mathrm{H} 25 \cdots \mathrm{O} 18^{v}$	0.82	1.68	2.428 (4)	150
O26-H26 . $\mathrm{O}^{\text {bi }}$	0.82	1.81	2.589 (3)	158
$\mathrm{O} 27-\mathrm{H} 27 A \cdots \mathrm{O} 1^{\text {vii }}$	0.84 (6)	2.05 (6)	2.884 (3)	174 (3)
O27-H27B \cdots O19	0.85 (5)	1.96 (4)	2.753 (3)	155 (4)
$\mathrm{O} 27-\mathrm{H} 27 \mathrm{~B} \cdots \mathrm{O} 22$	0.85 (5)	2.54 (5)	3.177 (3)	132 (3)
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 15^{\text {viii }}$	0.82	1.77	2.543 (3)	158
$\mathrm{O} 8-\mathrm{H} 81 \cdots \mathrm{O} 1^{\text {ix }}$	0.82	1.88	2.597 (3)	145
O12-H121 \cdots O15	0.82	1.82	2.623 (3)	165
O20-H201 . ${ }^{\text {O6 }}$	0.82	1.78	2.585 (3)	166
Symmetry codes: (i) $x, y-1, z$; (ii) $x-1, \frac{3}{2}-y, \frac{1}{2}+z$; (iii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (v) $1-x, 1-y,-z$; (vi) $x-1, y, z$; (vii) $x, \frac{3}{2}-y, \frac{1}{2}+z$; (viii) $1-x, 2-y,-z ;$ (ix) $2-x, 2-y,-z$.				

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bontchev, R. P., Do, J. \& Jacobson, A. J. (1999a). Angew. Chem. Int. Ed. 38, 1937-1940.
Bontchev, R. P., Do, J. \& Jacobson, A. J. (1999b). Inorg. Chem. 38, 22312233.

Bontchev, R. P., Do, J. \& Jacobson, A. J. (2000a). Inorg. Chem. 39, 33203324.

Bontchev, R. P., Do, J. \& Jacobson, A. J. (2000b). Inorg. Chem. 39, 41794181.

Brandenburg, K. (2001). DIAMOND. Release 2.1e. Crystal Impact GbR, Bonn, Germany.
Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Brown, I. D. \& Altermatt, D. (1985). Acta Cryst. B41, 244-247.
Cheetham, A. K., Ferey, G. \& Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.
Kniep, R., Schäfer, R., Engelhardt, R. \& Boy, I. (1999). Angew. Chem. Int. Ed. 38, 3642-3644.
Kritikos, M., Wikstad, E. \& Walldén, K. (2001). Solid State Sci. 3, 649-658. Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stoe \& Cie (1997). IPDS (Version 2.84), X-SHAPE (Version 1.02) and X-RED
(Version 1.09). Stoe \& Cie, Darmstadt, Germany.

